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Abstract

This paper concerns with a steady two-dimensional flow of an electrically conducting incompressible fluid over a
heated stretching sheet. The flow is permeated by a uniform transverse magnetic field. The fluid viscosity is assumed
to vary as a linear function of temperature. A scaling group of transformations is applied to the governing equations.
The system remains invariant due to some relations among the parameters of the transformations. After finding two
absolute invariants a third-order ordinary differential equation corresponding to the momentum equation and a sec-
ond-order ordinary differential equation corresponding to energy equation are derived. The equations along with the
boundary conditions are solved numerically. It is found that the decrease in the fluid viscosity makes the velocity to
decrease with the increasing distance of the stretching sheet. At a particular point of the sheet the fluid velocity
decreases with the decreasing viscosity but the temperature increases in this case. It is found that with the increase
of magnetic field intensity the fluid velocity decreases but the temperature increases at a particular point of the heated
stretching surface. The results thus obtained are presented graphically and discussed.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Lie-group analysis, also called symmetry analysis was
developed by Sophius Lie to find point transformations
which map a given differential equation to itself. This
method unifies almost all known exact integration tech-
niques for both ordinary and partial differential equations
[7]. Group analysis is the only rigorous mathematical
method to find all symmetries of a given differential equa-
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tion and no ad hoc assumptions or a prior knowledge of
the equation under investigation is needed. The boundary
layer equations are especially interesting from a physical
point of view because they have the capacity to admit a
large number of invariant solutions i.e. basically analytic
solutions. In the present context, invariant solutions are
meant to be a reduction to a simpler equation such
as an ordinary differential equation (ODE). Prandtl�s
boundary layer equations admit more and different sym-
metry groups. Symmetry groups or simply symmetries are
invariant transformations which do not alter the struc-
tural form of the equation under investigation [4].

The non-linear character of the partial differential
equations governing the motion of a fluid produces
ed.
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Nomenclature

A fluid viscosity variation parameter
B0 strength of uniform magnetic field
F non-dimensional stream function
F� variable
F 0 first-order derivative with respect to g
F00 second-order derivative with respect to g
F000 third-order derivative with respect to g
G absolute invariant defined in G = xrw�

M non-dimensional magnetic parameter
Pr Prandtl number
p, q variables
T temperature of the fluid
Tw temperature of the wall of the surface
T1 free-stream temperature
u, v components of velocity in the x- and y-

directions
z variable

Greek symbols

a1, a2, a3, a4, a5, a6, a 0, a00 transformation parameters
b0, b00 transformation parameters
g similarity variable
C Lie-group transformations
j the coefficient of thermal diffusivity
l dynamic viscosity
l� reference viscosity
m� reference kinematic viscosity
w stream function
w� variable
q density of the fluid
r conductivity of the fluid
h non-dimensional temperature
h�, �h variables
h0 first-order derivative with respect to g
h00 second-order derivative with respect to g
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difficulties in solving the equations. In the field of fluid
mechanics, most of the researchers try to obtain the sim-
ilarity solutions in such cases. In case of scaling group of
transformations, the group-invariant solutions are noth-
ing but the well known similarity solutions [6]. A special
form of Lie-group of transformations, known as scaling
group, is used in this paper to find out the full set of
symmetries of the problem and then to study which
of them are appropriate to provide group-invariant or
more specifically similarity solutions.

The study of magnetohydrodynamic (MHD) flow of
an electrically conducting fluid is of considerable interest
in modern metallurgical and metal-working processes.
There has been a great interest in the study of magneto-
hydrodynamic flow and heat transfer in any medium due
to the effect of magnetic field on the boundary layer flow
control and on the performance of many systems using
electrically conducting fluids. This type of flow has at-
tracted the interest of many researchers due to its ap-
plications in many engineering problems such as MHD
generators, plasma studies, nuclear reactors, geothermal
energy extractions. By the application of magnetic field,
hydromagnetic techniques are used for the purification
of molten metals from non-metallic inclusions. So such
type of problem, that we are dealing with, is very much
useful to polymer technology and metallurgy. Crane [5]
extended the work of Sakiadis [1,2] who was the first
person to study the laminar boundary layer flow caused
by a rigid surface moving in its own plane. Gupta and
Gupta [9] studied the problem in the light of suction
or blowing. In all the above mentioned studies, fluid vis-
cosity was assumed uniform in the flow region. But it is
known from physics that with the rise of temperature,
the coefficient of viscosity decreases in case of liquids
whereas it increases in case of gases. Abel et al. [8] stud-
ied the visco-elastic fluid flow and heat transfer over a
stretching sheet with variable viscosity.

In this paper, application of scaling group of trans-
formation for a hydromagnetic flow over a heated
stretching sheet with variable viscosity has been em-
ployed. This reduces the system of non-linear coupled
partial differential equations governing the motion of
fluid into a system of coupled ordinary differential equa-
tions by reducing the number of independent variables.
The system remains invariant due to some relations
among the parameters of the transformations. Two
absolute invariants are obtained and used to derive a
third-order ordinary differential equation corresponding
to momentum equation and a second-order ordinary
differential equation corresponding to energy equation.
Using shooting method the equations are solved.
Finally, analysis have been made to investigate the effect
of fluid viscosity parameter, Prandtl number and
magnetic parameter in the motion of an electrically
conducting liquid.
2. Equations of motion

We consider the steady two-dimensional flow of a
viscous incompressible electrically conducting fluid over
a heated stretching sheet in the region y > 0. Keeping the
origin fixed, two equal and opposite forces are applied
along the x-axis which results in stretching of the sheet
and a uniform magnetic field of strength B0 is imposed
along the y-axis.



4462 S. Mukhopadhyay et al. / International Journal of Heat and Mass Transfer 48 (2005) 4460–4466
The continuity, momentum and energy equations
governing such type of flow are written as
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where u and v are the components of velocity, respec-
tively, in the x- and y-directions, T is the temperature,
j is the coefficient of thermal diffusivity, q is the fluid
density (assumed constant), r is the conductivity of the
fluid, l is the coefficient of fluid viscosity.

2.1. Boundary conditions

The boundary conditions are given by

u ¼ cx; v ¼ 0; T ¼ T w at y ¼ 0. ð4Þ
u ! 0; T ! T1 as y ! 1. ð5Þ

Here c(>0) is a constant, Tw is the uniform wall temper-
ature, T1 is the temperature far from the sheet.

2.2. Method of solution

We now introduce the following relations for u, v and
h as

u ¼ ow
oy

; v ¼ � ow
ox

; ð6Þ

and

h ¼ T � T1

T w � T1
; ð7Þ

where w is the stream function.
The temperature dependent viscosity is given by

Batchelor [3]

l ¼ l�½aþ bðT w � T Þ�; ð8Þ

where l* is the constant value of the coefficient of visco-
sity far away from the sheet and a, b are constants and
b > 0.

We have used viscosity-temperature relation l =
a � bT(b > 0) which agrees quite well with the relation
l = 1/(b1 + b2T) [10,12] and also with the relation l =
e�aT [11] when second and higher order terms neglected
in the expansions.

The range of temperature i.e. (Tw�T1) studied here
is 0–23 �C.

The coefficient of viscosity l of a large number of liq-
uids agree very closely with the emperical formula given
by l = c/(a + bT)n where a, b, c, n are constants depend-
ing on the nature of liquid. This agrees well with n = 1
for pure water with our formulation for fluid viscosity.
Taking the relations (6) and (7) into consideration in
the boundary layer equation (2) and the energy equation
(3), we get the following equations
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where A = b(Tw � T1), m� ¼ l�

q and
rB2

0

q ¼ cM2, M is the
Hartman number.

The boundary conditions (4) and (5) then become
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¼ 0; h ¼ 1 at y ¼ 0; ð11Þ
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2.3. Application of scaling group of transformations

We now introduce the simplified form of Lie-group
transformations [13]

C : x� ¼ xe�a1 ; y� ¼ ye�a2 ; w� ¼ we�a3 ;

u� ¼ ue�a4 ; v� ¼ ve�a5 ; h� ¼ he�a6 . ð13Þ

Eq. (13) may be considered as a point-transformation
which transforms co-ordinates (x,y,w,u,v,h) to the co-
ordinates (x�,y�,w�,u�,v�,h�).

Substituting (13) in (9) and (10) we get,
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The system will remain invariant under the group of
transformations C, so we would have the following rela-
tions among the transformation parameters, namely

a1 þ 2a2 � 2a3 ¼ 3a2 � a3 � a6 ¼ 3a2 � a3 ¼ a2 � a3

ð16Þ

and

a1 þ a2 � a3 � a6 ¼ 2a2 � a6. ð17Þ

From the relation 3a2 � a3 = a2 � a3, we get a2 = 0.
The relation 3a2 � a3 � a6 = 3a2 � a3, we get a6 = 0.
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Again from the relation a1 + 2a2�2a3 = 3a2 � a3, we
get a1 = a3(since a2 = 0). The relations u� ¼ ow�

oy� and
v� ¼ � ow�

ox� gives us a3 = a4, a5 = 0. Thus we get
a1 = a3 = a4; a2 = a5 = a6 = 0.

From the boundary conditions we have

ow�

oy�
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ow�

ox�
¼ 0; h� ¼ 1 at y� ¼ 0 ð18Þ

and

ow�

oy�
! 0; h� ! 0 as y� ! 1. ð19Þ

Thus the set of transformations C reduces to a one
parameter group of transformations as

x� ¼ xe�a1 ; y� ¼ y; w� ¼ we�a1 ;

u� ¼ ue�a1 ; v� ¼ v; h� ¼ h. ð20Þ
2.4. Absolute invariants

First we find an absolute invariant which is a func-
tion of the dependent variable, namely g and g = yxs.

For this purpose we write

x� ¼ Bx; B ¼ e�a1 ; y� ¼ B
a2
a1y; w� ¼ B

a3
a1w. ð21Þ

To establish y�x�s = yxs, we have y�x�s ¼ yB
a2
a1Bsxs ¼

yxsBsþa2
a1 .

Putting sþ a2
a1
¼ 0 we get, y�x�s = yxs. Since a2 = 0 we

have s = 0 and g = y�. Thus

g ¼ y� ð22Þ

is an absolute invariant.
We now calculate a second absolute invariant G,

which involves the dependent variable w. Let us assume
that G = x�rw�.

Now, x�rw� ¼ BrxrB
a3
a1w ¼ Brþa3

a1xrw.
Putting r þ a3

a1
¼ 0, we have, r ¼ � a3

a1
¼ �1 (since

a1 = a3). Thus, we get the second absolute invariant G
as G = x��1w�.

Putting G = F(g) we can write

w� ¼ x�F ðgÞ. ð23Þ

We also have h� = h(g).
In view of the relations for y� and w�, Eqs. (14) and

(15) become

F 02 � FF 00 ¼ �Am�h0F 00 þ m�ðaþ A� AhÞF 000 � cM2F 0

ð24Þ

and

F h0 þ jh00 ¼ 0. ð25Þ

The boundary conditions are transformed as

F 0ðgÞ ¼ c; F ðgÞ ¼ 0 and hðgÞ ¼ 1 at g ¼ 0; ð26Þ
F 0ðgÞ ! 0; hðgÞ ! 0 as g ! 1. ð27Þ
Again, to remove the constants c and m� we introduce the
following transformations for F, g and h in Eqs. (24) and
(25).

g ¼ m�acbg�; F ¼ m�a
0
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0
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Using (28) in (24) and (25), we get
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ð30Þ

Putting 2a 0 � 2a = a00 + a 0 � 3a + 1 = a 0 � 3a + 1 =
a 0 � a, we get a = a 0, a ¼ 1

2
, a00 = 0.

Again putting 2b 0 � 2b = b00 + b 0 � 3b = b00 + b 0 �
3b = b 0 � 3b = b 0 � b + 1, we get b ¼ � 1

2
, b0 ¼ �b ¼ 1

2
,

b00 = 0.
Eqs. (27) and (28) become

F �02 � F �F �00 ¼ �A�h0F �00 þ ðaþ A� A�hÞF �000 �M2F �0;

ð31Þ
�h00 þ PrF � �h0 ¼ 0; ð32Þ

where Pr ¼ m�

j .
The boundary conditions are

F �0 ¼ 1; F � ¼ 0; �h ¼ 1 at g ¼ 0; ð33Þ
F �0 ! 0; �h ! 0 as g ! 1. ð34Þ

Taking F� = f and �h ¼ h the above Eqs. (31) and (32)
take the following form:

f 02 � ff 00 ¼ �Ah0f 00 þ ðaþ A� AhÞf 000 �M2f 0; ð35Þ
h00 þ Prf h0 ¼ 0. ð36Þ

The boundary conditions are

f 0 ¼ 1; f ¼ 0; h ¼ 1 at g ¼ 0 and

f 0 ! 0; h ! 0 as g ! 1. ð37Þ
3. Numerical method for solution

The above Eqs. (35) and (36) along with boundary
conditions are solved by converting it to an initial value
problem. We set

f 0 ¼ z; z0 ¼ p; p0 ¼
z2 � fp þ Aqp þM2z
� �

ðaþ A� AhÞ ; ð38Þ

h0 ¼ q; q0 ¼ �Prfq ð39Þ

and the boundary conditions are

f ð0Þ ¼ 0; f 0ð0Þ ¼ 1; hð0Þ ¼ 1. ð40Þ

Since these equations are non-linear we can not super-
pose solutions on this problem. Furthermore, in order
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Fig. 2. Distribution of temperature h(g) against g when M = 0,
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to integrate (38) and (39) as an initial value problem we
require a value for p(0) i.e. f 00(0) and q(0) i.e. h 0(0) but no
such values are given. The suitable guess values for f 00(0)
and h 0(0) are chosen and then integration is carried out.
We compare the calculated values for f 0 and h at g = 5
(say) with the given boundary condition f 0(5) = 0 and
h(5) = 0 and adjust the estimated value, f 00(0) and
h 0(0), to give a better approximation for the solution.

We take a series of values for f 00(0) and h 0(0) and ap-
ply the fourth-order classical Runge–Kutta method with
step-size h = 0.02. To improve the solutions we use lin-
ear interpolation namely Secant method. The above pro-
cedure is repeated until we get the results upto the
desired degree of accuracy, 10�5.
Pr = 0.1.
4. Results and discussions

In order to analyse the results, the numerical compu-
tation has been carried out using the method described
in the previous section for various values of the para-
meter such as fluid viscosity variation parameter A,
Hartman number M and Prandtl number Pr. For illus-
tration of the results numerical values are plotted in
the figures one to six. The physical explanation of the
appropriate change of parameters are given below.

Fluid viscosity and thermal conductivity (hence ther-
mal diffusivity) play an important role in the flow char-
acteristics of laminar boundary layer problems. Fluid
properties are significantly affected by the variation of
temperature. The increase of temperature leads to a local
increase in the transport phenomena by reducing the vis-
cosity across the momentum boundary layer and so the
heat transfer rate at the wall is also affected.

First we concentrate in the velocity distribution and
heat transfer with Prandtl number Pr = 0.1 in the ab-
sence of magnetic field (M = 0) and presented in Figs.
1 and 2. The horizontal velocity profiles in the sheet
for the various values of A(=0,0.3,0.5) are shown in
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Fig. 1. Distribution of velocity f 0(g) against g when M = 0,
Pr = 0.1.
Fig. 1. With the increasing A the thickness of the velo-
city boundary layer increases. So the velocity decreases
with the increase of A, i.e. with the decreasing viscosity.
Fig. 2 represents the temperature profiles for the same
set of values of the parameter A. For any value of A con-
sidered, the temperature (h) is found to decrease with the
increase of g but the change of h is not significant. The
increase of temperature dependent fluid viscosity para-
meter (A) makes decrease of thermal boundary layer
thickness, which results in decrease of temperature pro-
file h(g). Due to this reason, the horizontal velocity f 0(g)
decreases in Fig. 1 and from these two figures it is clear
that at a far distance from the sheet(here g = 5) the
velocity as well as temperature vanishes.

Control of boundary layer flow is of practical signif-
icance. Several methods have been developed for the
purpose of artificially controlling the behaviour of the
boundary layer. The application of magnetohydrody-
namic (MHD) principle is another method for affecting
the flow field in the desired direction by altering the
structure of the boundary layer.

Fig. 3 shows the horizontal velocity profile for vari-
ous Hartmann number M(=0,1,2) with constant Pr
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Fig. 3. Distribution of horizontal velocity f 0(g) against g when
A = 0, Pr = 0.1.
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M = 0.
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(=0.1) the viscosity of the fluid being assumed uniform
(i.e. a = 1,A = 0). The velocity curves show that the rate
of transport is considerably reduced with the increase of
M. It clearly indicates that the transverse magnetic field
opposes the transport phenomena. This is due to the fact
that variation of the Hartmann number leads to the var-
iation of the Lorentz force due to magnetic field and the
Lorentz force produces more resistance to transport
phenomena. In all cases the velocity vanishes at some
large distance from the sheet.

Fig. 4 exhibits the temperature profiles for different
values of M (= 0,1,2). In each case, temperature is
found to decrease with the increase of g until it vanishes
at g = 5. But the temperature is found to increase for
any non-zero fixed value of g with the increase of M.

Fig. 5 shows the effects of Prandtl number (Pr) on the
temperature h(g) for fixed values of A and M. As antic-
ipated, the thermal boundary layer thickness decreases
with increasing Prandtl number (i.e. with the decreasing
thermal diffusivity). It is clear from Fig. 5 that the tem-
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Fig. 4. Distribution of temperature h(g) against g when A = 0,
Pr = 0.1.
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Fig. 5. Distribution of temperature h(g) against g when A = 0,
M = 1.
perature at a point decreases with increase in Prandtl
number Pr but the increase in Prandtl number Pr has
no such effect on the horizontal velocity. The increase
of Prandtl number Pr means that the thermal diffusivity
(as A = 0) decreases. So the rate of heat transfer is de-
creased due to the decrease of thermal boundary layer
(Fig. 6).
5. Conclusion

Under the assumption of temperature dependent vis-
cosity, the present method gives solutions, for steady
incompressible boundary layer flow over a heated
stretching surface in the presence of uniform transverse
magnetic field. The results pertaining to the present
study indicate that the temperature dependent fluid vis-
cosity plays a significant role in shifting the fluid away
from the wall. The effect of transverse magnetic field
on a viscous incompressible conducting fluid is to sup-
press the velocity field which in turn causes the enhance-
ment of the temperature field.
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